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Fluctuation dissipation ratio in the one-dimensional kinetic Ising model

E. Lippiello* and M. Zannetti†

Istituto Nazionale di Fisica della Materia, Unita` di Salerno and Dipartimento di Fisica, Universita` di Salerno,
84081 Baronissi, Salerno, Italy
~Received 22 October 1999!

The exact relation between the response functionR(t,t8) and the two time correlation functionC(t,t8) is
derived analytically in the one-dimensional kinetic Ising model subjected to a temperature quench. The fluc-
tuation dissipation ratioX(t,t8) is found to depend on time throughC(t,t8) in the time region where scaling
C(t,t8)5 f (t/t8) holds. The crossover from the nontrivial formX@C(t,t8)# to X(t,t8)[1 takes place as the
waiting time tw is increased from below to above the equilibration timeteq.

PACS number~s!: 05.20.Dd, 05.70.Ln, 64.75.1g
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I. INTRODUCTION

The time evolution of a system relaxating to equilibriu
is characterized by two distinct time regimes: the off eq
librium transient for t,teq and the stationary equilibrium
evolution fort.teq, whereteq is the equilibration time. Nor-
mally, teq is smaller than experimental times and one c
actually observe equilibration. However, the existence
situations in which the opposite is true, namely, whereteq
exceeds by far any practical observation time as in gla
systems at low temperature, has contributed to arise a lo
interest in the off equilibrium relaxation regime. It turns o
that quite a useful tool in the investigation of these slow
relaxating systems, with and without disorder, is the fluct
tion dissipation relation.

For definiteness, let us consider a system in equilibrium
some temperatureTI . At the timet50 a quench to a lowe
temperatureTF is performed. On top of this primary relax
ation process a second one is activated by switching on
external field at the timetw.0. Characterizing the respons
of the system under the action of the perturbation by
response functionR(t,t8), the search for a fluctuation diss
pation relation aims to connectR(t,t8) to the relevant corre-
lation functionC(t,t8) in the unperturbed relaxation proces
Given R(t,t8) andC(t,t8) one can always write

R~ t,t8!5
X~ t,t8!

TF

]

]t8
C~ t,t8!, ~1!

where t>t8. Without any further specification this is just
definition of the quantityX(t,t8), which is called the fluc-
tuation dissipation ratio~FDR!. Equation~1! acquires predic-
tive power when independent statements are made abou
FDR. Thus, if the shortest timet8 is greater than the equili
bration timeteq, i.e., if one looks into the time translatio
invariant equilibrium dynamics, the fluctuation dissipati
theorem~FDT! requiresX(t,t8)[1. This is no more true
when t8,teq. However, if appropriate conditions ont8,t,teq
are satisfied it may turn out thatX(t,t8) depends on the time
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arguments only throughC(t,t8). This was first discovered by
Cugliandolo and Kurchan@1# in the context of mean field
spin glass models at low temperature. In that case the sys
does not equilibrate (teq5`) andX(t,t8)5X@C(t,t8)# in the
asymptotic limit of large times. Subsequently the validity
this relation was verified for finite dimensional spin gla
models@2# and also in the coarsening processes of non
ordered systems@3,4#. As a matter of fact a classification o
slowly relaxating systems can be made@5# on the basis of the
behavior ofX(C).

The relation betweenX and C is important for different
reasons. From the point of view of analytical calculations
allows us to close the equations of motion forR andC @1#.
From the more fundamental point of view of the understa
ing of the off equilibrium dynamics it can be related to th
effective temperature of different dynamical modes@6# and
under certain hypothesis it provides a connection betw
the relaxation regime and the structure of equilibrium sta
@7#.

In this paper we analyze the relaxation to equilibrium
the one-dimensional kinetic Ising model quenched from
initial temperatureTI to the lower final temperatureTF . The
correlation length then grows from some initial valuej I ,
which we assumeO(1), to thefinal value

jF52@ ln tanh~J/TF!#21 ~2!

where J.0 is the nearest-neighbor ferromagnetic intera
tion. The equilibration time is defined by

teq5jF
2 . ~3!

By lowering the temperature of the quenchteq can be tuned
at will with limTF→0teq5` allowing for the investigation of
the slow relaxation coming from the high-temperature si
We compute the response functionR(t,t8) after switching on
a random external field at the timetw after the quench. We
are then able to analyze in detail the changeover from
equilibrium to the off equilibrium regime by monitoring th
change in the FDR~or in the integrated response! as tw is
varied from tw.teq to tw,teq. When tw.teq dynamics is
time translation invariant and the usual FDT holds. When
region tw,teq is entered the deviation from FDT occur
However, if the difference betweentw and teq is sufficiently
3369 © 2000 The American Physical Society
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large, there is a range of values betweentw and teq where
C(t,t8) scales. Within this range the FDR depends only
C, while outside there remains an explicit dependence ontw .
In other words with a finite but largeteq the off equilibrium
dynamics follows the pattern of interrupted aging and
find that the FDR depends only onC as long as aging holds
The case of the zero temperature quench is the limiting c
(teq5`) where aging occurs for arbitrarily large times yiel
ing X(t,t8)5X@C(t,t8)# at all times.

II. UNPERTURBED CORRELATION FUNCTIONS

In the following we consider a one-dimensional ferroma
netic Ising model with nearest-neighbor interaction:

H@s#52J(
i 51

N

s is i 11 ~4!

evolving in time with Glauber single spin flip dynamics

]

]t
P~@s#,t !5(

i
$w~2s i !P~@Ris#,t !2w~s i !P~@s#,t !%,

~5!

whereP(@s#,t) is the probability of realization of the con
figuration @s# at the timet, @Ris# is the configuration with
the i th spin reversed,

w~s i !5
1

2 F12
g

2
s i~s i 211s i 11!G ~6!

is the transition rate from @s# to @Ris#, and g
5tanh(2J/TF).

Given an initial probability distributionP(@s#,t50),
with the choice~6! for the transition rate the solution of Eq
~5! for large time reaches the equilibrium Gibbs sta
Peq@s#51/Z exp@2(1/TF)H@s##. The dynamics in the one
dimensional case has been solved by Glauber@8#. Let us
summarize those properties of the time dependent correla
functions which will be needed in the following. Assumin
that the initial stateP(@s#,t50) is symmetrical the prob
ability distribution P(@s#,t) remains symmetrical through
out yielding^s i(t)&[0 for all time. The equal time and th
two time correlation functions are then defined by

Di j ~ t !5(
[s]

s is j P~@s#,t !, ~7!

Ci j ~ t,t8!5 (
[s][ s8]

s is j8P~@s8#,t8!P~@s8#,t8u@s#,t ! ~8!

with t>t8 and Ci j (t,t)5Di j (t). P(@s8#,t8u@s#,t) is the
conditional probability to find the system in the configurati
@s# at the timet, given that it was in the configuration@s8#
at the earlier timet8. We assume that space translation
variance holds at all times.

From Eqs.~5! and ~7! one can show that the equal tim
correlation function satisfies the equation of motion
n

e

se

-

on

-

d

dt
Di j ~ t !522Di j ~ t !1

g

2
@Di , j 21~ t !1Di , j 11~ t !

1Di 21,j~ t !1Di 11,j~ t !# ~9!

for iÞ j and (d/dt)Dii (t)50, since Dii (t)51. Similarly,
from Eq. ~8! taking into account that also the condition
probability satisfies the master equation~5! one finds

]

]t
Ci j ~ t !52Ci j ~ t,t8!1

g

2
@Ci 21,j~ t,t8!1Ci 11,j~ t,t8!#.

~10!

The single spin conditional expectation can be computed
plicitely obtaining@8#

(
[s]

P~@s8#,t8u@s#,t !s i5(
l

s l8Fi 2 l~ t2t8!, ~11!

where Fi 2m(t2t8)5e2(t2t8)I i 2m@g(t2t8)# and I n(x) are
the Bessel functions of imaginary argument. Then, using
definitions ~7! and ~8!, the two times and the equal time
correlation functions are related by

Ci j ~ t,t8!5(
l

D jl ~ t8!Fi 2 l~ t2t8! ~12!

or in Fourier space one finds

Ck~ t,t8!5Dk~ t8!e2gk(t2t8) ~13!

with gk512g cosk. Given the initial conditionDi , j (0) Eq.
~9! can be solved exactly@8#. After some microscopic time
t0, which we assume much smaller thanteq, memory of the
initial condition is lost and fork!1, jF@1 one has@9#

Dk~ t8!52S t8

p D 1/2 1

k21jF
22E0

1

dyy21/2

3@jF
22e2jF

22t8y1k2e(2[k21jF
22] t81k2t8y)#,

~14!

where we have expandedgk to lowest order ink and jF
21

using g51/cosh(jF
21). The form ~14! for the equal time

structure factor obeys the scaling relationDk(t8)
5(t8)1/2g(k2t8,t8/teq) with the limits

Dk~ t8!;H ~ teq!
1/2geq~k2teq! for t8/teq@1,

~ t8!1/2gsc~k2t8! for t8/teq!1.
~15!

Inserting Eq.~14! into Eq. ~13! and inverting the Fourier
transform, the corresponding scaling form for the tw
time correlation function is obtainedCi , j (t,t8)5 f (u i
2 j u/(t8)1/2,t/t8,t8/teq) with the limiting behaviors

Ci , j~ t,t8!;5 f eqS u i 2 j u
~ teq!

1/2 ,
t2t8

teq
D for t8/teq@1,

f scS u i 2 j u

~ t8!1/2
,
t

t8
D for t8/teq!1.

~16!
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The use of the smallk approximation~14! is justified since
for small enoughTF the structure factor builds up a large an
narrow peak aboutk50 which gives the main contribution
to the integral overk. In the following it will be sufficient to
consider the autocorrelation function (i 5 j ). In the case of
the zero temperature quench the scaling behavior at the
tom of Eq.~16! is obeyed for all times sinceteq5` and the
explicit form of the scaling function is given by@9,10#

Ci ,i~ t,t8!5 f sc~ t/t8!5
2

p
arcsinA 2

11
t

t8

. ~17!

With TF.0 and teq,`, Ci ,i(t,t8) can be computed by a
combination of analytical and numerical integration~see the
Appendix!. In Fig. 1 we have plotted logCi,i(t,t8) againstx
5(t/t821) for different values oft5t8/teq illustrating the
crossover from the scaling form~17! to the exponential de
cay corresponding to the top of Eq.~16! as t grows from
small to large values.

III. RESPONSE FUNCTION

As stated in the Introduction, let us now assume that a
the quench toTF , at some timetw.0, a site and time de
pendent external fieldhi(t) is switched on. We are intereste
in the response in the magnetization to the action of
field. More specifically, we wish to investigate the relati
between the magnetization response and the correlation f
tion in absence of the field.

For sufficiently small external field, the response in t
magnetization at sitei and t.tw is given by linear respons
theory

D^s i~ t !&5^s i~ t !&h2^s i~ t !&h50

5(
j
E

tw

t

dt8Ri , j~ t,t8!hj~ t8!, ~18!

where

FIG. 1. Plot of the autocorrelation function for different valu
of t5t8/teq and teq5103. The continuous line is the plot of th
anlytical solution~17! coresponding toTF50.
ot-

r

is

c-

Ri , j~ t,t8!5S d^s i~ t !&h

dhj~ t8!
D

h50

~19!

is the causal response function. The difference between
two expectation values in Eq.~18! is given by D^s i(t)&
5(@s#s iDP(@s#,t) where DP(@s#,t)5Ph(@s#,t)
2P(@s#,t) is the difference between the probabilities wi
and without the field. The time evolution ofPh(@s#,t) is
given by the master equaltion~5! with the transition rate~6!
replaced by wh(s i)5w(s i)1Dw(s i) where Dw(s i)5
2tanh(hi /TF)siw(si). Taking hi /TF sufficiently small
tanh(hi /TF).hi /TF and following @8# up to first order we
have

DP~@s#,t !5
1

TF
(
[s8]

(
i

s i8E
tw

t

dt8hi~ t8!@w~s i8!P~@s8#,t8!

1w~2s i8!P~@Ris8#,t8!#P~@s8#,t8u@s#,t !

~20!

yielding

Ri , j~ t,t8!5
1

TF
(

[s][ s8]

s j8@w~s j8!P~@s8#,t8!

1w~2s j8!P~@Rjs8#,t8!#P~@s8#,t8u@s#,t !s i .

~21!

Performing the sum over@s# first and using Eq.~11! we find

Ri , j~ t,t8!5
1

TF
(
[s8]

(
l

s j8s l8$w~s j8!P~@s8#,t8!

1w~2s j8!P~@Rjs8#,t8!%Fi 2 l~ t2t8! ~22!

and since only the term withl 5 j survives in the summation
we have

Ri , j~ t,t8!5
1

TF
F12

g

2
@D j , j 21~ t8!1D j , j 11~ t8!#GFi 2 j~ t2t8!.

~23!

In order to recast this result in terms ofCi , j (t,t8) let us
differentiate Eq.~12! with respect to the time arguments

]

]t8
Ci , j~ t,t8!5(

l

dDj ,l~ t8!

dt8
Fi 2 l~ t2t8!

1(
l

D j ,l~ t8!
d

dt8
Fi 2 l~ t2t8! ~24!

]

]t
Ci , j~ t,t8!52(

l
D j ,l~ t8!

d

dt8
Fi 2 l~ t2t8!. ~25!

Adding Eqs.~24! and~25! the summation in Eq.~25! cancels
the second one in Eq.~24! yielding
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]

]t8
Ci , j~ t,t8!1

]

]t
Ci , j~ t,t8!5(

l

dDj ,l~ t8!

dt8
Fi 2 l~ t2t8!.

~26!

Next, using Eq.~9! for the time derivative whenlÞ j , adding
and subtracting a similar contribution withl 5 j and using
translational invariance we can rewrite

]

]t8
Ci , j~ t,t8!1

]

]t
Ci , j~ t,t8!

522(
l

H D j ,l~ t8!2
g

2
@D j ,l 11~ t8!1D j ,l 21~ t8!#J Fi 2 l

3~ t2t8!12H D j , j~ t8!2
g

2
@D j , j 11~ t8!1D j , j 21~ t8!#J

3Fi 2 j~ t2t8!. ~27!

Using Eqs.~12! and~10! the first sum in the right hand sid
is given by 2(]/]t)Ci , j (t,t8), while the second term coin
cides, up to a constant factor, with the right hand side of
~23!, sinceD j , j (t8)51. Therefore, we finally get the follow
ing expression for the response function:

Ri , j~ t,t8!5
1

2TF
F ]

]t8
Ci , j~ t,t8!2

]

]t
Ci , j~ t,t8!G ~28!

which can be rewritten in the form~1!

Ri , j~ t,t8!5
Xi , j~ t,t8!

TF

]

]t8
Ci , j~ t,t8! ~29!

with

Xi , j~ t,t8!5
1

2F12
~]/]t !Ci , j~ t,t8!

~]/]t8!Ci , j~ t,t8!
G . ~30!

Alternatively, we can expose the deviation from FD
through an additive term

Ri , j~ t,t8!5
1

TF

]

]t8
Ci , j~ t,t8!2

1

2TF
Bi , j~ t,t8! ~31!

with

Bi , j~ t,t8!5
]

]t8
Ci , j~ t,t8!1

]

]t
Ci , j~ t,t8!. ~32!

When time translation invariance holds we have eit
Xi , j (t,t8)51 or Bi , j (t,t8)50 and the usual FDT is recov
ered.

IV. RANDOM EXTERNAL FIELD

In the simulations@4# the external field is taken random
with site independent bimodal distribution

P@h#5P iF1

2
d~hi2h!1

1

2
d~hi1h!G . ~33!
.

r

The reason for this choice is not to bias the evolution tow
the formation of predominantly positive or negative doma
through the introduction of the external perturbation. T
quantity of interest then is the staggered magnetization

M ~ t,tw!5
1

N (
i

D^s i~ t !&
hi

h
, ~34!

where the overbar represents the average over the field
figurations. From Eqs.~18! and ~33! the integrated respons
is given by

x i i ~ t,tw!5
1

h
M ~ t,tw!5E

tw

t

dt8Rii ~ t,t8!. ~35!

Dropping the double index and inserting the form~29! of
the response function, if the FDR depends on time o
throughC(t,t8) we have

TFx@C~ t,tw!#5E
C(t,tw)

1

dCX~C!, ~36!

namely, also the integrated response depends on time
through the autocorrelation function. This occurs when F
holds withX(C)51 yielding

TFx@C~ t,tw!#5@12C~ t,tw!# ~37!

and when the scaling form~17! holds. In that case from Eq
~30! follows

X~ t,t8!5
1

2 F11
t8

t G ~38!

and inverting Eq.~17!

t8

t
5

sin2Fp2C~ t,t8!G
22sin2Fp2C~ t,t8!G ~39!

we find

X~C!5
1

22sin2S p

2
CD . ~40!

Inserting this into Eq.~36! we obtain

TFx@C~ t,tw!#5A2

p
arctanFA2 cotS p

2
C~ t,tw! D G . ~41!

We have then proceeded to compute~see the Appendix!
TFx(t,tw) with the values of the parameters (teq5103) cor-
responding to the behavior of the autocorrelation funct
displayed in Fig. 1 and we have plottedTFx(t,tw) against
C(t,tw) in Fig. 2 for different values oftw /teq. In order to
understand the plot notice that ifteq is finite, from Eq.~35!
follows limt→`TFx(t,tw)5(TF /h)Meq51 whereMeq is the
equilibrium value of the magnetization. On the other ha
with a finite teq one has also limt→`C(t,tw)50. Therefore,



g

in
r
e

he
s

ing
he
e
ia

-
r i
s

is
en
t
s

-
s

o

the
term

or

rom
el
, in
-

lity
for
or-
is
off

R
m

y

o
l

PRE 61 3373FLUCTUATION DISSIPATION RATIO IN THE ONE- . . .
when plottingTFx vs C all the curves starting out at (C
51, TFx50) must end up in the same point (C50, TFx
51). The dependence ontw /teq enters on how the initial and
the final point are joined. Thus, iftw /teq.1, FDT holds over
the entire time interval (tw ,t) and the plot is linear accordin
to Eq.~37!. However, iftw /teq,1 then it is possible to have
also t/teq,1. In that caseC(t,t8) obeys the scaling form
~17! and in the range of values ofC where this holds,TFx
follows the shape~41!. This forces the plot to fall below the
straight line of the FDT, but eventually asC decreases the
plot must raise again in order to reach the valueTFx51 at
C50. Therefore, the peculiar shape of the curves display
a change in concavity is a consequence of a finite equilib
tion time. The final upword bending of the curves corr
sponds to interrupted aging and that is where the curves
depend ontw . Furthermore, the range of values where t
plot follows the shape~41! is larger the smaller the value i
of tw /teq. In the limiting caseteq5` aging holds for all time
and the plot obeys Eq.~41! over the entire range ofC values.

V. CONCLUSIONS

The relaxation dynamics of the one-dimensional Is
model allows us to analyze in detail the transition from t
off equilibrium to the equilibrium regime. In particular, w
have obtained the crossover in the FDR from the nontriv
form X(C) given by Eq.~40! to X(t,t8)[1 as a manifesta
tion at the level of the response function of the crossove
the underlying correlation function from aging to time tran
lation invariance.

A comment should be made about the shape ofX(C). In
the case of the zero temperature quench~40! holds for all
time. On the other hand, the zero temperature quench
phase ordering process eventually leading to the coexist
of ordered phases as in the quench below the critical poin
a system with a finite critical temperature. In the latter ca
X(C) displays @4,5# a qualitatively different behavior de
creasing from 1 and flattening to zero, while in our ca
X(C) decreases from 1 toward 1/2 asC goes to zero. Al-
though we do not have a complete understanding of the

FIG. 2. Plot of the integrated response for different values
tw /teq and teq5103. The continuous line is the plot of the anlytica
solution ~41! coresponding toTF50.
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gin of this discrepancy, we believe this to be related to
absence in the one-dimensional case of the asymmetry
in the relation betweenR(t,t8) andC(t,t8). In the context of
Langevin dynamics one can derive@11# in full generality

R~ t,t8!5
1

2TF
S ]

]t8
2

]

]t D C~ t,t8!2
1

2TF
A~ t,t8!, ~42!

where A(t,t8) is the asymmetry term which vanishes f
linear dynamics. From Eq.~42! the FDR takes the following
general form:

X~ t,t8!5
1

2 F 12

]

]t
C~ t,t8!

]

]t8
C~ t,t8!

G2
1

2

A~ t,t8!

]

]t8
C~ t,t8!

~43!

and if we assume scalingC(t,t8)5 f (t/t8) the square brack-
ets contribution is given by Eq.~38! independently from the
form of f (x). Therefore, if we accept thatX is a function of
C when scaling holds, in order to have limC→0X(C),1/2
the asymmetry term must necessarily be nonzero. Now, f
Eq. ~28! follows that in the one-dimensional Ising mod
with Glauber dynamics the asymmetry is absent. Indeed
this case as Eqs.~9! and ~10! show, dynamics is linear. An
other example of linear dynamics leading to limC→0X(C)
51/2 is the massless Gaussian model@11#. Conversely, if
one considers the Ising model with higher dimensiona
and a finite critical temperature, the equations of motion
the two point correlation functions are coupled to higher c
relation functions producing a nonlinearity which in turn
expected to produce a nonvanishing asymmetry in the
equilibrium regime.
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APPENDIX

In order to carry out the computation ofTFx(t,tw) we
start from the sum of the time derivatives ofCk(t,t8) ob-
tained from Eq.~13!

S ]

]t8
1

]

]t D Ck~ t,t8!5
dDk~ t8!

dt8
e2gk(t2t8). ~A1!

Using Eq.~14! for Dk(t8) and carrying out integrations b
parts we find

dDk~ t8!

dt8
5

2

Apt8
e2jF

22t822At8

p
e2(k21jF

22)t8k2

3E
0

1dy

Ay
ek2t8y. ~A2!

Inserting this result into Eq.~A1! and integrating overk we
have

f
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B~ t,t8!5S ]

]t8
1

]

]t D C~ t,t8!

5E
2`

` dk

2p

dDk~ t8!

dt8
e2(1/2)(k21jF

22)(t2t8)

5
1

p
A 2

t8~ t2t8!
e2(1/2jF

22(t1t8)

2
1

p
e2(1/2)jF

22(t1t8)E
0

1

dyA 2t8

y~ t1t822yt8!3

5
1

p~ t1t8!
A2~ t2t8!

t8
e2(1/2)jF

22(t1t8). ~A3!

Next, Fourier transforming the equation of motion~9! one
obtains

d

dt
Dk~ t !522gkDk~ t !1r ~ t ! ~A4!

with

r ~ t !5
e2(1/2)jF

22t

Apt
1jF

21Er f ~AjF
22t !, ~A5!
, J
whereErf is the error function. Inserting Eq.~A4! in the right
hand side of Eq. ~A1! and using (]/]t)Ck(t,t8)5
2gkCk(t,t8) one finds

S ]

]t8
2

]

]t D Ck~ t,t8!5r ~ t8!e2(1/2)(k21jF
22)(t2t8) ~A6!

which after integration overk gives

S ]

]t8
2

]

]t D C~ t,t8!5
2

p

e2(1/2)jF
22(t1t8)

A2t8~ t2t8!

1A2

p
jF

21
Erf~AjF

22t8!

At2t8

3e2(1/2)jF
22(t2t8). ~A7!

Inserting this result in Eq.~28! with i 5 j the integrated re-
sponseTFx(t,tw) is obtained carrying out numerically th
integration in Eq.~35!. Similarly, the autocorrelation func
tion is obtained by taking the difference of Eqs.~A3! and
~A7! and carrying out numerically the time integration in

C~ t,tw!511E
tw

t

ds
]

]s
C~s,tw!. ~A8!
tt.
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