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Fluctuation dissipation ratio in the one-dimensional kinetic Ising model
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The exact relation between the response funcR¢nt’) and the two time correlation functio@(t,t’) is
derived analytically in the one-dimensional kinetic Ising model subjected to a temperature quench. The fluc-
tuation dissipation ratiX(t,t") is found to depend on time throug(t,t”) in the time region where scaling
C(t,t")=f(t/t") holds. The crossover from the nontrivial fordi C(t,t’')] to X(t,t')=1 takes place as the
waiting timet,, is increased from below to above the equilibration titge

PACS numbsg(s): 05.20.Dd, 05.70.Ln, 64.759

[. INTRODUCTION arguments only throug@(t,t"). This was first discovered by
Cugliandolo and Kurchafl] in the context of mean field
The time evolution of a system relaxating to equilibrium spin glass models at low temperature. In that case the system
is characterized by two distinct time regimes: the off equi-does not equilibratet (=) andX(t,t")=X[C(t,t")] in the
librium transient fort<t., and the stationary equilibrium asymptotic limit of large times. Subsequently the validity of
evolution fort>te,, Wheretqis the equilibration time. Nor-  this relation was verified for finite dimensional spin glass
mally, teq is smaller than experimental times and one canmodels[2] and also in the coarsening processes of non dis-
actually observe equilibration. However, the existence ofordered systemi3,4]. As a matter of fact a classification of
situations in which the opposite is true, namely, whege slowly relaxating systems can be mdé&éon the basis of the
exceeds by far any practical observation time as in glasshehavior ofX(C).
systems at low temperature, has contributed to arise a lot of The relation betweeX and C is important for different
interest in the off equilibrium relaxation regime. It turns out reasons. From the point of view of analytical calculations it
that quite a useful tool in the investigation of these slowlyallows us to close the equations of motion ®rndC [1].
relaxating systems, with and without disorder, is the fluctuafrom the more fundamental point of view of the understand-
tion dissipation relation. ing of the off equilibrium dynamics it can be related to the
For definiteness, let us consider a system in equilibrium aeffective temperature of different dynamical modé$ and
some temperaturg, . At the timet=0 a quench to a lower under certain hypothesis it provides a connection between
temperatureT ¢ is performed. On top of this primary relax- the relaxation regime and the structure of equilibrium states
ation process a second one is activated by switching on a].
external field at the time,>0. Characterizing the response  In this paper we analyze the relaxation to equilibrium in
of the system under the action of the perturbation by théhe one-dimensional kinetic Ising model quenched from the
response functioiR(t,t"), the search for a fluctuation dissi- initial temperatureT, to the lower final temperaturg: . The
pation relation aims to conneB(t,t’) to the relevant corre- correlation length then grows from some initial valég,
lation functionC(t,t") in the unperturbed relaxation process. which we assum®(1), to thefinal value
GivenR(t,t") andC(t,t’) one can always write

ée=—[IntanhJ/TE)] 2
R(t,t')= XLt )iC(t,t’), (1)  WhereJ>0 is the nearest-neighbor ferromagnetic interac-
Te ot tion. The equilibration time is defined by
wheret=t’. Without any further specification this is just a teq= &F - 3

definition of the quantityX(t,t’), which is called the fluc-
tuation dissipation ratiéFDR). Equation(1) acquires predic- By lowering the temperature of the quenich can be tuned
tive power when independent statements are made about ti&é will with lim+__oteq= o allowing for the investigation of
FDR. Thus, if the shortest timg is greater than the equili- the slow relaxation coming from the high-temperature side.
bration timetg,, i.e., if one looks into the time translation We compute the response functiB(t,t’) after switching on
invariant equilibrium dynamics, the fluctuation dissipationa random external field at the timg after the quench. We
theorem(FDT) requiresX(t,t’)=1. This is no more true are then able to analyze in detail the changeover from the
whent’ <t.,. However, if appropriate conditions dht,t,;  equilibrium to the off equilibrium regime by monitoring the
are satisfied it may turn out thX{(t,t’) depends on the time change in the FDRor in the integrated responsast,, is
varied fromt, >tg, to t,,<teq. Whent,>te, dynamics is
time translation invariant and the usual FDT holds. When the
*Electronic address: lippiello@sa.infn.it region t, <teq is entered the deviation from FDT occurs.
"Electronic address: zannetti@sa.infn.it However, if the difference betwedp andt.,is sufficiently
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large, there is a range of values betwagnand t., where

C(t,t") scales. Within this range the FDR depends only on

C, while outside there remains an explicit dependencg,on
In other words with a finite but largg,, the off equilibrium
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d
5 Dij(t)= = 2Dyj(t)+ 20D; ;1(1)+ Dy 1(D)

+Di_1j(1)+Djq(1)] 9

dynamics follows the pattern of interrupted aging and we

find that the FDR depends only d@has long as aging holds.

The case of the zero temperature quench is the limiting cadd
(teg=2°) where aging occurs for arbitrarily large times yield-

ing X(t,t")=X[C(t,t")] at all times.

Il. UNPERTURBED CORRELATION FUNCTIONS

In the following we consider a one-dimensional ferromag-

netic Ising model with nearest-neighbor interaction:

N

H[U]=—Ji21 Ti0i41 (4)

evolving in time with Glauber single spin flip dynamics

J
EP(["]’”:2 {w(=0o)P([Rio],t) —w(a)P([o],1)},
)
whereP([ o],t) is the probability of realization of the con-

figuration[ o] at the timet, [R;o] is the configuration with
theith spin reversed,

Y
w(oi)=35|1=50i(gi-1+0it) (6)
is the transition rate from[o] to [Rjo], and vy

=tanh(2/Tg).
Given an initial probability distributionP([ o],t=0),
with the choice(6) for the transition rate the solution of Eq.

(5) for large time reaches the equilibrium Gibbs state

Ped o]=1/Zexd —(L/Tg)H[ o]]. The dynamics in the one-
dimensional case has been solved by GlaJigér Let us

for i#j and @/dt)D;;(t)=0, sinceD;;(t)=1. Similarly,
om Eg. (8) taking into account that also the conditional
probability satisfies the master equatic@ one finds

J
S CHD==Cy(tt)+ 2[Ci_ (L) +Ciay(tt)]
(10

The single spin conditional expectation can be computed ex-
plicitely obtaining[8]

% P([a'],t'uo],t)ai:EI olFi(t—t'), (11

where F;_(t—t")=e ], _ [y(t—t')] and I ,(x) are

the Bessel functions of imaginary argument. Then, using the
definitions (7) and (8), the two times and the equal times
correlation functions are related by

Cij(t,t')ZZI Dj(t)F(t—t") (12
or in Fourier space one finds
Ci(t,t') =Dy (t")e ") (13

with y,=1—ycosk. Given the initial conditiorD; ;(0) Eq.
(9) can be solved exactly8]. After some microscopic time
to, which we assume much smaller thiag, memory of the
initial condition is lost and fok<1, &>1 one hag9]

t/ 1/2 1 1
— I d —1/2
77) k2+§F2fo vy

o g2 T2 e 240 o 2t
X[gFZe ér ty+kZe( [ke+ & 7Tt +kty)]’

Dk(t')=2

summarize those properties of the time dependent correlation

functions which will be needed in the following. Assuming

that the initial stateP([o],t=0) is symmetrical the prob-
ability distribution P([o],t) remains symmetrical through-
out yielding({c;(t))=0 for all time. The equal time and the
two time correlation functions are then defined by

Dij<t>=§ aioiP([a],t), (7)

Ci(t,t')=
[

oi0{P([o' 1.t )P(Lo" L |[o]t) (8
]

>
alla’

with t=t' and C;;(t,t)=Dj;(t). P([o'],t'[[c],t) is the

conditional probability to find the system in the configuration

[o] at the timet, given that it was in the configuratidrr’]

at the earlier time’. We assume that space translation in-

variance holds at all times.

From Egs.(5) and (7) one can show that the equal time

correlation function satisfies the equation of motion

(14)

where we have expandeg|, to lowest order ink and ¢ .
using y=1/cosh&:1). The form (14) for the equal time
structure factor obeys the scaling relatiob,(t")
=(t") g (K2’ t' Ite) with the limits

(teg M Qed K?teg for t'/te>1,
(1) 2gs(K?t")  for t'/teg=1.

Inserting Eq.(14) into Eq. (13) and inverting the Fourier
transform, the corresponding scaling form for the two
time correlation function is obtainedC; ;(t,t")="f(|i
—j|/(t") Y2ttt Iteg with the limiting behaviors

Dk(t’)~’ (15

li=j| t=t’ ,

fod 7., ——| for t'/te>1,
(te teq

SC(—,—) for t'/teg<1.
(tl)l/2 t’
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Ri,j<t,t’)=(m) (19
5 shi(t") /,_,
-1.0 : 7
L is the causal response function. The difference between the
a0 h two expectation values in Eq18) is given by A(oi(t))
z . =3,0AP([o],t) where AP([a],t)=Pu([o],t)
© > R —P([o],t) is the difference between the probabilities with
< o 5 e ] and without the field. The time evolution &, ([o].t) is
> “a o m:=1o-1 given by the master equaltigh) with the transition rate6)
> s A 1A= replaced by wy(oi)=w(o;)+Aw(o;) where Aw(o;)=
aof, A ’:”%:10 1 —tanhfy /Te)ow(o;). Taking h;/Tg sufficiently small
%, al tanhf, /Tg)=h;/Te and following [8] up to first order we
g s have
%0 50 100 15.0 20.0

-1

1 t
AP )= U odth(t)[w(e)P([o' 1.t
FIG. 1. Plot of the autocorrelation function for different values (L]t Te [g] E. 7 ftw (OwlePLaLE)
of 7=t'/tgq and teq= 10°. The continuous line is the plot of the )
anlytical solution(17) coresponding ta=0. +w(—o{)P([Rio’'1,t")IP([a'],t'|[o],1)

The use of the smak approximation(14) is justified since 20
for small enoughT ¢ the structure factor builds up a large and
narrow peak abouk=0 which gives the main contribution
to the integral ovek. In the following it will be sufficient to 1
consider the autocorrelation function=(j). In the case of R, () ==— Uj'[w(gj')p([gf],t')

the zero temperature quench the scaling behavior at the bot- TF[UHU’]

tom of Eq.(16) is obeyed for all times sincg,=> and the , U -

explicit form of the scaling function is givenqtﬁ@,lO] FW(=o)P((Ro’ J1)IP([o" Lt |[[o].) .

(21)

yielding

2
Cii(t ) =fs(t/t") = —arcsin (17 Performing the sum ovéir] first and using Eq(11) we find

1

Rij(tt)==2 > ofo/{w(o))P([o']t")
With Te>0 andte<%, Ci;(t,t') can be computed by a Flo !
combination of analytical and numerical integrati@ee the
AppendixX. In Fig. 1 we have plotted loG;,(t,t") againstx
=(t/t'—1) for different values ofr=t'/t, illustrating the
crossover from the scaling foriid7) to the exponential de-
cay corresponding to the top of E(L6) as = grows from
small to large values.

+w(—o])P([Rjo'[,t)}Fi_i(t—t") (22

and since only the term with= | survives in the summation
we have

1
Rij(t,t")= T, 1- %[Dj,j1(t/)+Dj,j+1(t’)]}Fij(t_t’)-
(23)

IIl. RESPONSE FUNCTION

As stated in the Introduction, let us now assume that after
the quench toT¢, at some time,,>0, a site and time de- In order to recast this result in terms ai;(t,t") let us
pendent external fiell;(t) is switched on. We are interested differentiate Eq(12) with respect to the time arguments
in the response in the magnetization to the action of this

field. More specifically, we wish to investigate the relation d , dDj (t") ’
between the magnetization response and the correlation func- — G (1t )= ———Fi(t=t)
L . at I dt

tion in absence of the field.

For sufficiently small external field, the response in the d
magnetization at siteandt>t,, is given by linear response +E Dy (t")—Fi_(t—t") (24
theory | » dt’

Aai(1))=(ai())n=(Ti(t))n=0 P d

t StCLLt)==2 Dj(t) —Fi(t=t'). (29
[ dt

=; Jt dt'R; j(t,t)h;(t"), (18)

Adding Egs.(24) and(25) the summation in Eq25) cancels
where the second one in E@24) yielding
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dD; (t")
j,l
——F_(t—t").
dt’ i—I
(26)
Next, using Eq(9) for the time derivative wheh+ j, adding
and subtracting a similar contribution wil=j and using
translational invariance we can rewrite

J J
Tci,j(tat,)+Eci,j(tyt,):2|

a ! (9 !
Eci,j(tvt )+5Ci,j(t,t )

= —22| D (t")— %[Dj,|+1(t,)+Dj,l—l(t,)]}Fi—l
X(t=t")+2{Dj;(t")— %[Dj,j+1(t,)+Dj,j—l(t,)]]
XFi_j(t=t"). (27

Using Eqgs.(12) and(10) the first sum in the right hand side
is given by 2¢/dt)C; ;(t,t"), while the second term coin-
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The reason for this choice is not to bias the evolution toward
the formation of predominantly positive or negative domains
through the introduction of the external perturbation. The
quantity of interest then is the staggered magnetization

1 h;
M(t,t,)=— > Adoi(t)+, (34)
N I h
where the overbar represents the average over the field con-

figurations. From Egs(18) and (33) the integrated response
is given by

1 t
)(ii(t.'fw)ZHM(L'{W):Jt dt' Ry (t,t"). (39

Dropping the double index and inserting the fof29) of
the response function, if the FDR depends on time only
throughC(t,t") we have

1
Tex[Cltty)]= fc(“ dCx(©), (36

cides, up to a constant factor, with the right hand side of Eq.

(23), sinceD; ;(t")=1. Therefore, we finally get the follow-
ing expression for the response function:

R ST C ! aC ! 28
ij(tt )_Z_TF Y ij(tt )—5 Lt (28
which can be rewritten in the forr(l)
R Xt o c , 29
ij(tt )_T—FE ij(tth) (29
with
1 alat)C; i (t,t’
X (t,t)=> 1—% . (30)
' 20 (alat")Ci (L)

Alternatively, we can expose the deviation from FDT
through an additive term

! 1 (9 ! 1 !
Ri(t.t ):T—F;Ci,j(tut )—2—-'-F|3i,j(t,t ) (3D

with

1%
Bij(t,t')=——Ci(tt") +—2Ci(t,t).

]
- (32
at’

When time translation invariance holds we have either

X j(t,t')=1 or B; j(t,t")=0 and the usual FDT is recov-
ered.

IV. RANDOM EXTERNAL FIELD

In the simulationd4] the external field is taken random
with site independent bimodal distribution

PLh]=1I; 15(hi—h)+%5(hi+h) . (33

2

namely, also the integrated response depends on time only
through the autocorrelation function. This occurs when FDT
holds withX(C)=1 yielding

Tex[C(t,ty) ]=[1-C(t,ty)] 37

and when the scaling forrfl7) holds. In that case from Eq.
(30) follows

X(t,t')ZE 1+T (39
and inverting Eq(17)
. 7T ’ |
¢ sir? EC(t,t )
-= —— (39
2—sir? EC(t,t’)}
we find
1
X(C)= — (40)
2—Sil’12(§C)

Inserting this into Eq(36) we obtain

Tex[C(tt,)]= \/garcta+ V2 co(

We have then proceeded to compusee the Appendix
Tex(t,ty,) with the values of the parameterg = 10°) cor-
responding to the behavior of the autocorrelation function
displayed in Fig. 1 and we have plottdg x(t,t,,) against
C(t,ty) in Fig. 2 for different values of,, /teq. In order to
understand the plot notice thattify is finite, from Eq.(35)
follows lim_ . Tex(t,ty) =(Te/h)Mgq=1 whereM is the
equilibrium value of the magnetization. On the other hand,
with a finite t,q one has also lim,..C(t,t,,)=0. Therefore,

T

2C(t,tw)”. 41
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gin of this discrepancy, we believe this to be related to the
absence in the one-dimensional case of the asymmetry term
in the relation betweeR(t,t') andC(t,t’). In the context of
Langevin dynamics one can deri{/&l] in full generality

N 1 d d ) 1 )
R(t,t )—ﬁ E—E C(t,t )—Z—TFA('[,I ), (42

Tex(tt,)

where A(t,t") is the asymmetry term which vanishes for
linear dynamics. From Ed42) the FDR takes the following
general form:

J
7SO At
. ‘ . . | X(tt)=5| 1- -5 (43
0.0 0.2 0.4 0.6 0.8 1.0 2 Jd 2 9
Ctt,) —C(t,t) —C(t,t)
ot’ ot’

FIG. 2. Plot of the integrated response for different values of ] ] , ,
t/teq andte,=10°. The continuous line is the plot of the anlytical and if we assume scalig(t,t") =f(t/t’) the square brack-
solution (41) coresponding td==0. ets contribution is given by Ed38) independently from the
form of f(x). Therefore, if we accept thatis a function of
when plottingTgx vs C all the curves starting out at( € when scaling holds, in order to have Iim,oX(C)<1/2
—1, Trx=0) must end up in the same poin€£0, Ty the asymmetry term must necessarily be nonzero. Now, from
=1'). The dependence ap/t.,enters on how the ini,tial and EQ' (28) follows that. in the one—dimen;ional Ising modell
the final point are joined. Thuqs,ﬁt\,/teq>1, FDT holds over W'.th Glauber dynamics the asymmetry IS abgent. Indeed, in
the entire time intervalt(, ,t) and the plot is linear according th['hs case as |Eq$?)l_and(1(§)) ShO\.N’ d|3/n<':1jr_n|cst|s !me)a(w.CAn-
to Eq.(37). However, ift,, /t,<1 then it is possible to have Slfzr _exetlrr]np €o IlnearG ynamics lea mgCo tmo I( ).f
alsot/teg<1. In that caseC(t,t") obeys the scaling form IS thé massiess taussian mOBE.l]' onversely, 1t
(17) and in the range of values & where this holdsTry  °N€ considers the Ising model with higher dimensionalit
follows the shape41). This forces the plot to fall below the and a finite critical temperature, the equations of motion for
straight line of the F.DT but eventually & decreases the the two point correlation functions are coupled to higher cor-
plot must raise again in,order to reach the valyg =1 at relation functions producing a nonlinearity which in turn is
C=0. Therefore, the peculiar shape of the curves displayin xpected to produce a nonvanishing asymmetry in the off

a change in concavity is a consequence of a finite equilibra-qUIIIbrIum regime.
tion time. The final upword bending of the curves corre-
sponds to interrupted aging and that is where the curves do

depend ort,,. Furthermore, the range of values where the  This work was partially supported by the European TMR
plot follows the shap¢41) is larger the smaller the value is Network—Fractals Contract No. FMRXCT980183 and from

of ty, /teq. In the limiting case,= aging holds for all time  MURST through Grant No. PRIN-97.
and the plot obeys E@41) over the entire range & values.
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APPENDIX

V. CONCLUSIONS ,
In order to carry out the computation af-x(t,t,) we

The relaxation dynamics of the one-dimensional Isingstart from the sum of the time derivatives 6f(t,t’) ob-
model allows us to analyze in detail the transition from thetained from Eq(13)
off equilibrium to the equilibrium regime. In particular, we
have obtained the crossover in the FDR from the nontrivial
form X(C) given by Eq.(40) to X(t,t")=1 as a manifesta-
tion at the level of the response function of the crossover in
the underlying correlation function from aging to time trans-
lation invariance.

A comment should be made about the shapX(@). In

dDi(t")

e Ay

14
_—

ot ot Cutt)=

Using Eq.(14) for D, (t') and carrying out integrations by
parts we find

the case of the zero temperature qued) holds for all dD(t") 2 , 7 -

time. On the other hand, the zero temperature quench is a = —§ t'—2\ﬁe—(k HEEI K2
phase ordering process eventually leading to the coexistence dt’ Jat” ™

of ordered phases as in the quench below the critical point of

a system with a finite critical temperature. In the latter case > f 1ﬂek2ﬂy (A2)
X(C) displays[4,5] a qualitatively different behavior de- 0y '

creasing from 1 and flattening to zero, while in our case
X(C) decreases from 1 toward 1/2 @sgoes to zero. Al- Inserting this result into Eq/A1) and integrating ovek we
though we do not have a complete understanding of the orihave
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C(t,t")

B(t,t i
N=| —+=
(t,t") o Tt

:F Ak dDUY) e A0-1)
—=27  dt’

ziw /Le—(uzg;z(m')
T Nt/ (t—t')
_ie(I/Z)fpz(t+t')f1dy1 /2;
w 0 y(t+t' —2yt")3
_ 1 [2('[—t’)e_(1/2)§’;2(t+t/).
m(t+t) t’

Next, Fourier transforming the equation of moti@) one
obtains

(A3)

d
—Dy(t)=—=2yDy(t)+r(1)

i (A2)
with
e (U2)c %
r(t)= Tw;lErf(@), (A5)
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whereErf is the error function. Inserting E¢A4) in the right

hand side of Eg.(Al) and using @/dt)Cy(t,t')=
— % Ci(t,t") one finds

J J
ot ot
which after integration ovek gives

9 g 2 e (U2 A(t+t)

———|C(tt) == ———

gt dt T 2t (t—t")
+\E§1Erfw§3t')

™ it

w e~ (U2)Er 4(t-t')

Cultt) =r(t))e- WAC+EI)  (ap)

(A7)

Inserting this result in Eq28) with i=j the integrated re-
sponseTgx(t,t,,) is obtained carrying out numerically the
integration in Eq.(35). Similarly, the autocorrelation func-
tion is obtained by taking the difference of Eq&3) and
(A7) and carrying out numerically the time integration in

d

aSC(s,tW).

C(t,tw)=1+ft ds (A8)
t

w
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